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Abstract: Dairy mastitis is a disease of dairy cattle caused by a variety of pathogenic microorganisms
which has biought huge economic losses aused huge economic losses to the world. In this paper,
Harmine derivatives and tetrahydro-β-carboline derivatives synthesized by the splice method are
shown to have a good inhibitory effect on the pathogenic bacteria of dairy mastitis. The results
of a bacteriostatic test on pathogenic bacteria of dairy cow mastitis (S. dysgalactiae, S. pyogenes,
B. subtilis and P. vulgaris) showed that compound 7l had the best bacteriostatic effect on Streptococcus
dysgalactiae, with a mic value of 43.7 µ g/mL. When the concentration of 7l was 1 × MIC and 2 ×
MIC, it had a significant inhibitory effect on Streptococcus dysgalactiae, and there was almost no growth
of Streptococcus dysgalactiae at 4 × MIC. The binding properties of target compound 7l to amine oxidase
[flavin-containing] A protein were simulated by the molecular docking technique. The ligand 7l
achieved strong binding with the receptor through three hydrogen bonds. The hydrogen bonds were
amino acid residues thr-52, arg-51 and ser-24, which are the main force for the compound to bind to
active sites.

Keywords: single crystal diffraction; chemical synthesis; bacteriostatic experiment; molecular dock-
ing

1. Introduction

Harmel is a plant of the genus Pederma of Tribulus teristaceae, growing in arid
areas [1]. Harmine is the main active ingredient of Pederma teristaceae [2]; The structure
is shown in Figure 1. It has antibacterial properties and protects the seeds from bacterial
invasion. Harmine has abundant natural distribution and extensive pharmacological
activities, i.e., anti-tumor, anti-inflammatory, antioxidant and other effects. Additionally, its
excellent antibacterial effect has attracted extensive attention from researchers [3]. Structural
modification of harmine is expected to improve its antibacterial activity. Cinnamic acid
is isolated from cinnamon or benzoin resin and has the characteristics of low molecular
weight and low price. Harmine and cinnamic acid are both plant extracts with certain
bacteriostatic effects. Compounds 7l and 7h were obtained by concatenating the cinnamate
moiety at the harmine N9 site. Compounds 11b, 11f and 11g are obtained by linking
different benzene ring groups at N2 site of tetrahydro-β-carboline through ester bonds. The
structure of tetrahydro-β-carboline derivative is similar to that of the Harmine derivative.
The spatial structure of the compound was obtained by single crystal diffraction [4,5]. This
is a common chemical modification method to connect two compounds to produce new
compounds. In this paper, target compound 7l is shown to have significantly improved
antibacterial performance, and notably, enhanced inhibition of Streptococcus agalactiae. In
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recent years, the topic non-antibiotic drugs of cow mastitis has received a great deal of
attention. In this paper, S. dysgalactiae, S. pyogenes, B. subtilis and P. vulgaris was selected as
the experimental bacteria to study the inhibitory effect of the target compound 7l on the
pathogenic bacteria of cow mastitis. It provides a theoretical basis for the study of Harmine
derivatives and target compound 7l.
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Figure 1. Structure of Harmine and cinnamic acid.

2. Results
2.1. Minimum Inhibitory Concentration Test

A microplate dilution method was used to study the inhibitory effect of compounds
7l, 7h, 11b, 11f and 11g on Gram-positive bacteria (S. dysgalactiae, S. pyogenes, B. subtilis)
and gram-negative bacteria (P. vulgaris). Harmine and cinnamic acid are used as control
drugs. And the results were shown in Table 1. Compounds 7l, 7h, 11b, 11f and 11g had a
good inhibitory effect on both Gram-positive and Gram-negative bacteria, and 7l had the
best inhibitory effect on S. dysgalactiae.

Table 1. Minimum Inhibitory Concentration (MICs) (µg·mL−1).

Compound S. dysgalactiae P. vulgaris B. subtilis S. pyogenes

7a 87.5 175 350.0 175.0
7b 175.0 350 700.0 175.0
7c 87.5 175 350.0 350.0
7d 175.0 175 700.0 175.0
7e 87.5 350 1400.0 175.0
7f 87.5 350 700.0 175.0
7g 175.0 175 700.0 350.0
7h 87.5 175.0 350.0 175.0
7i 87.5 350 350.0 175.0
7j 175.0 350 700.0 175.0
7k 175.0 350 350.0 175.0
7l 43.7 175.0 175.0 87.5

11a 175.0 350 700.0 175.0
11b 87.5 175.0 350.0 350.0
11c 350.0 350 350.0 350.0
11d 350.0 350 500.0 175.0
11e 350.0 350 1400.0 350.0
11f 175.0 700.0 700.0 350.0
11g 175.0 350.0 700.0 175.0
11h 350.0 350 500.0 350.0
11i 175.0 350 700.0 175.0

Harmine 175.0 350.0 350.0 175.0
cinnamic acid 500.0 500.0 500.0 500.0

2.2. Results of Bactericidal Time-Kill Kinetics

The results of bactericidal time-kill kinetics were shown in Figure 2. Accord to the
effect of Harmine and 7l on Streptococcus dysgalactiae, the growth inhibition of 1 × MIC
in the Harmine group was shown. The growth inhibition was significant in the 2 ×
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MIC group, and no growth was found in the 4 × MIC group at 10 h. In the 7l group,
1 × MIC was significantly inhibited, and 2 × MIC and 4 × MIC did not grow at 12 h and
6 h, respectively. Therefore, compound 7l has a stronger inhibitory effect on Streptococcus
dysgalactiae than Harmine.
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(ATCC 35666).

2.3. Synthesis and Characterization

The synthesis of 7l and its intermediates is described in Scheme 1. After Pictet-Spengler
reaction, 6-methoxytryptamine forms β-carboline framework under acidic conditions, and
is dehydrogenated under Pd/C catalysis to obtain Harmine. After Perkin reaction, substi-
tuted benzaldehyde and substituted acetic acid produce substituted cinnamic acid. The
Harmine N9 site reacts with dibromoalkane in nucleophilic substitution. The nucleophilic
substitution reaction between the product and substituted cinnamic acid is the key of the
whole process.

Tetrahydro-β-carboline derivatives and their intermediates are synthesized in Scheme 2.
The formation of the amide bond generally occurs via the condensation reagent method;
however, as the condensation reagent method progresses too quickly, this experiment used
the acyl halide method, which is relatively mild. In this setting, commonly used acylation
reagents are SOCl2 and COCl2. First, the corresponding carboxylic acid reacts with its
acylation reagent to produce the corresponding acyl chloride; it then reacts with the amino
group to form an amide bond while the acyl halide method synthesizes the amide bond.
The purpose of this is to improve the controllability of the whole reaction process.
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2.4. Crystal Structure Description of the Compound

Crystal data of 7l compound were obtained by X-ray single crystal diffraction. The
molecular formula of the compound is C28H29N3O5. Detailed: monoclinic P 21/c (no.14)
a = 8.7050(11) Å b = 27.138(3) Å c = 10.4121(14) Å V = 2457.9(5) Å3 Z = 4 Rgt(F) = 0.0485
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wRref(F2) = 0.1067. The crystal temperature remains 296(2) K. Detailed crystallographic
data and structural refinement parameters are shown in Table 2. Draw spatial structure
diagram (Figure 3) and packing diagram (Figure 4) according to compound geometric
parameters of 7l.

Table 2. Crystallographic data and structure refinement parameters of compound 7l.

Empirical Formula C28H29N3O5

Temperature (K) 296
Crystal system Monoclinic

Space group P21/c
a/ Å 8.7050 (11)
b/Å 27.138 (3)
c/ Å 10.4121 (14)
α/◦ 90
β/◦ 92.221 (2)
γ/◦ 90

Volume/Å3 2457.9 (5)
Z 4

Pcalc mg/mm3 1.318
µ(Mo Kα) (mm−1) 0.09

F (0 0 0) 1032
Crystal size (mm3) 0.30 × 0.20 × 0.20

Radiation Mo Kα (λ = 0.71073)
CCDC deposit number 2,118,489
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The crystals of 7l is a colorless, transparent and shiny block particles. The crystal size
is 0.3 mm × 0.25 mm × 0.25 mm. The data were calculated by the least square method.

The molecule is not coplanar, according to the torsion angles C21-C22-C23-C28(-
165.49◦) and C21-C22-C23-C24(17.8◦). The angle between Cinnamic acid nuclear plane
C23-C28 and Harmine nuclear plane C1-C11 is 68.075(33), The C20-O1 bond (1.3252 Å) is
shorter than an ordinary C19-O1 bond (1.4517 Å) but longer than a C20-O2 bond (1.1979 Å)
due to p-π conjugation effect. The sum of the angles of O2-C20-O1(123.15◦), O2-C20-
C21(123.79◦) and O1-C20-C21(113.06◦) is 360◦, indicating the sp2 hybridization state of the
C(22) atom.

The cinnamic acid benzene part of target compound 7l is parallel to the harmine
benzene part of another 7l molecule, and the distance between them is 3.6687 Å, which
is conducive to a stable structure between molecules. According to the crystal structure
analysis of the target compound, the plane where C1-C11 and C23-C28 are located is
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an immutable region, and C14-C22 is a single chain with a long distance which can be
torsional and folded. This allows target compound 7l to enter the active pocket and generate
hydrogen bonds and other secondary bonds with the receptor.
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2.5. Molecular Docking Results

The protein receptor PDBID: 2Y5Z is matched and docked with ligands 7l and 7h
through AutoDock Vina software. The results showed that 7l was bound to amino acid
residues Thr-52, Arg-51 and Ser-24 of Amine oxidase [flavin-containing] A protein by hydrogen
bonds, and the bond lengths were 3.4 Å, 3.4 Å and 3.4 Å respectively [6]. Additionally, 7h
binds to the Gly-22 amino acid residue of Amine oxidase [flavin-containing] A receptor and
produces a 2.3 Å long hydrogen bond at Gly-22. Which is the main force for molecules
to enter the active site. The results are shown in Figure 5. The 7l crystal structure was
compared with the ligand structure obtained by docking. The C19-O1-C20 angle of the
ligand structure is larger than that of 7l. The included angle of the target compound C19-
O1-C20 is 117.00 (11). The plane of C1-C11 and C23-C28 is an immutable region, and the
structure has not changed. The single chain region of C14-C22 is twisted and folded, so
that the oxygen atom atO2 position forms a hydrogen bond with Thr-52. After molecular
docking, the molecular energy is −9.6 kcal/mol. The ligand structure of 7h is compared
with the crystal structure. The Angle of crystal structure C12-O5-C13 is 115.747◦, that of C1-
C6 and C18-C28 is 14.2◦, that of the ligand structure C12-O5-C13 is 109.8◦, and the dihedral
Angle of C1-C6 and C18-C28 is 165.5◦. The regional structure of the indole ring and benzene
ring did not change, and the molecular energy after docking was −7.9 kcal/mol. According
to the data recorded in the PDB database, a combination of Amine oxidase [flavin-containing]
A receptor and Harmine does not produce a hydrogen bond. Target compounds 7l and
7h have good binding characteristics with Amine oxidase [flavin-containing] A, and their
strength is greater than that of Harmine, Detailed crystal data are shown in Tables S1–S30
of the supplementary document.

The protein receptor PDBID:2Y5Z was combined with ligands 11b, 11f and 11g in a
flexible docking manner. Ligands have different binding properties at receptor binding
sites. The binding diagram is preferentially drawn with the conformation with the lowest
binding energy, as shown in Figure 6. Notably, 11b has no hydrogen bond when entering
the active site, and the molecular energy after docking is −8.1 kcal/mol. Additionally, 11F
binds to the active site of Amine oxidase [flavin containing] A protein by two hydrogen bonds,
producing hydrogen bonds with lengths of 2.0 Å and 2.5 Å at the amino acid residues of
Gln-215 and Tyr-444, respectively. The molecular energy after binding is −8.7kcal/mol. The
N2-C13-C19 angle of the ligand structure of 11f is the same as that of the crystal structure,
which is 119.9◦. The dihedral angle between the C1-C7 plane and C14-C19 plane of the
crystal structure is 40.3◦, and the dihedral angle between the C1-C7 plane and C14-C19
plane of the ligand structure is smaller than that of crystal structure, which facilitates the
formation of the hydrogen bond between 11f and Gln-215.
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Figure 6. Schematic diagram of compounds 11b (A), 11f (B) and 11g (C) binding to Amine oxidase
[flavin-containing] A protein.

The binding site of 11g entering the active pocket is similar to that of 11f. It is also
connected in the form of a hydrogen bond with Tyr-444 amino acid residue. The hydrogen
bond length is 3.5 Å and the molecular energy after binding is −7.7kcal/mol. The N2-C11-
C12 angle of the ligand structure of 11g is the same as that of the crystal structure of 11g:
120.0◦. The C1-C8 region of the crystal structure and ligand structure is the same as that
of the C12-C17 region, and there is no change. The torsion angle of N2-C11-C12-C13 and
the dihedral angle between the C1-C6 plane and C12-C17 plane of the ligand structure are
larger than those of the crystal structure. The torsion angle of N2-C11-C12-C13 is 59.7◦, and
the dihedral angle formed by the C1-C6 plane and C12-C17 plane is 35.7◦.

Notably, 7l, 7h, 11b, 11f and 11g all have high binding ability to Amine oxidase [flavin-
containing] A protein. In the flexible docking process, the conformation of the ligand
compound is automatically adjusted according to the active site, while that of the crystal
structure is different. A comparison of the two conformations showed that the indole ring
and benzene ring hardly changed. Because C-C and C-N bonds can be twisted, the single
chain region between indole ring and benzene ring is an important factor for conformational
change, and is conducive to the reduction of steric hindrance of ligand binding to the
receptor, as well as to the compound binding to the receptor. The binding of 7l produces
three hydrogen bonds, the binding of 7h produces one, the binding of 11b produces no
hydrogen bonds, the binding of 11f produces two hydrogen bonds, and the binding of 11g
produces one hydrogen bond. The greater the number of hydrogen bonds, the stronger
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the binding ability at the active site, and the more advantages compared with competitive
binding ligands. The molecular energies of 7l, 7h, 11b, 11f and 11g after docking with
the receptor were −9.6 kcal/mol, −7.9 kcal/mol, −8.1 kcal/mol, −8.7 kcal/mol and
−7.7 kcal/mol respectively. Among them, 7l had the lowest molecular energy after binding
with the receptor, indicating that its structure is more stable.

3. Discussion

Target compounds 7l and 7h were obtained by connecting the cinnamic acid moiety
to the Harmine N9 site, while compounds 11b, 11f and 11g were obtained by linking the
benzene ring-containing group to tetrahydro-β-Carboline. They were characterized by
1H NMR, 13C NMR and ESI-MS. The crystal structure of compound 7l was determined.
By simulating the binding process between ligand molecule and receptor, compounds
7l, 7h, 11f and 11g were shown to be able to form strong hydrogen bonds with receptor
Amine oxidase [flavin-containing] A. Target compound 7l connects to the receptor Amine
oxidase [flavin-containing] A protein as a target molecule. Compared with harmine, target
compound 7l can bind to the receptor Amine oxidase [flavin-containing] A protein more
effectively through hydrogen bonding. Cow mastitis is a disease caused by a variety of
pathogenic bacteria. Compound 7l, synthesized in the present research, has good inhibitory
activity against its pathogenic bacteria. In vitro, the antibacterial activity of compound
7l was better than that of Harmine. Compound 7l had good bactericidal activity against
Streptococcus lactis with a minimum inhibitory concentration (MIC) of 43.7 µg/mL. This
study is of great significance for the treatment of dairy cow mastitis, and is of guiding
significance for the transformation of Harmine and tetrahydro-β-Caroline. The antibacterial
activity of the compound is worthy of further study.

4. Materials and Methods
4.1. Instruments and Reagents

Positive control Harmine and cinnamic acid were purchased from Beijing Solarbio
Technology Co., Ltd. (Beijing, China). All chemical reagents were purchased from Energy
Reagent Co., Ltd. (Beijing, China). Or Shanghai Huangdi Chemical Co., Ltd. (Shanghai,
China). Unless otherwise stated, all commercial reagents were used immediately upon
receipt. HRMS was obtained with an ESI-Brucker APEX II49e mass spectrometer (Bruker,
Billerica, MA, USA). The 1H NMR and 13C NMR spectra were recorded with a JNM-ECS
(JEOL Co., Ltd., Tokyo, Japan) and Bruke AM-400 spectrometer (Bruker, Marietta, GA,
USA), respectively. The solvents used were deuterated reagents (DMSO-d6 and CDCl3).
Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet,
t = triplet, dd = doublet of doublets, m = multiplet, br = broad), coupling constant J (Hz)
and integration. To monitor the reaction, thin layer chromatography (TLC) was performed
on a silica gel plate (Qingdao Ocean Chemical Co., Ltd., Shandong, China) and observed
with an ULTRAVIOLET lamp. The product is further purified by column chromatography
on silica gel (200–300 mesh, Gansu Yihua Chemical Glass Instrument Co., Ltd., Lanzhou,
China) and eluted by air pressure in an appropriate solvent mixture. Crystals of the target
compounds were obtained by solvent evaporation at 25 ◦C and their crystal structures were
determined using a Supernova single crystal diffractometer.

4.2. MIC Testing

In this study, the microplate dilution method was used to screen the antibacterial ac-
tivity of 7l in vitro [7]. The investigation included three Gram-positive strains, Streptococcus
dysgalactiae ATCC 35666, Bacillus subtilis CMCC(B) 63501 and Streptococcus pyogenes ATCC
19615, and one Gram-negative strain, Proteusbacillus vulgaris CMCC(B) 49027. Harmine and
cinnamic acid were used as control drugs.
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4.3. Bactericidal Time-Kill Kinetics

Streptococcus dysgalactiae was prepared in Mueller Hinton broth by shaking at 37 ◦C
for 6 h. Next, 7l (1 × MIC, 2 × MIC, 4 × MIC), Harmine (1 × MIC, 2 × MIC, 4 × MIC)
and normal saline (as the growth control group) were added into the bacterial suspension,
and the final bacterial concentration was 106–107 CFU/mL. At a predetermined time point
(0, 0.5, 1, 2, 4, 6, 12 and 24 h), viable bacteria were counted and cultured at 37 ◦C for
24 h [8,9]. Bacterial concentrations are expressed as Log10 (CFU/mL). The same procedure
was repeated three times.

4.4. Synthesis and Crystallization

The 6-methoxtryptamine was dissolved in 40 mL HCl solution (0.1N) and stirred at
room temperature until clarified. Next, 5 mL of 35% acetaldehyde solution (20 mmol)
was slowly added to the reaction solution. The reaction was carried out at 40 ◦C for
6 h, the reaction liquid was cooled to room temperature and the pH was adjusted to 10.
After extraction with dichloromethane, the organic phase was combined, washed with
saturated NaCl solution, dried with anhydrous sodium sulfate, filtered, decompressed and
suspended by steaming, and purified by column chromatography to prepare the compound
for use [10].

Triethylamine was dropped into 3-(4-methoxyphenyl) acrylic acid (1 mmol) acetone
and stirred into the above compound until it was completely dissolved. Then, 9-(4-
bromobutyl-7-methoxy-1-methyl-9H-pyridine [3,4-b] indole (3 mmol) was dissolved in
the reaction solution and stirred continuously at 25 ◦C for 3 h. The reaction process was
monitored by TLC. After the mixture has completely reacted, a solution of hydrochloric
acid add to adjust the pH to 3–5 [11–13]. The mixture was extracted three times with ethyl
acetate. The organic phase was extracted and washed with saturated NaHCO3 solution
and saturated NaCl solution, respectively. The organic phase was dried on anhydrous
Na2SO4 and concentrated by filtration. Compound 7l was further purified by silica gel
column chromatography [14,15].

3-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) propyl (E)-3-(4-methoxy phenyl)
acrylate(7a) Yellow solid, 0.45g (yield 52.1%), m.p. 133.2–133.9 ◦C, 1H NMR (400 MHz,
CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 5.2 Hz, 1H), 7.65 (d,
J = 16.0 Hz, 1H), 7.49 (d, J = 8.8 Hz, 2H), 6.94–6.87 (m, 4H), 6.29 (d, J = 16.0 Hz, 1H), 4.65 (t,
J =7.6 Hz, 2H), 4.28 (t, J = 5.8 Hz, 2H), 3.91 (s, 3H), 3.86 (s, 3H), 3.06 (s, 3H), 2.28–2.22 (m,
2H); 13C NMR (100 MHz, CDCl3) δ: 166.97, 161.53, 160.89, 144.97, 142.95, 140.47, 138.48,
135.12, 129.76, 129.48, 122.35, 115.21, 114.79, 114.33, 112.22, 108.82, 93.21, 61.42, 55.58, 55.34,
41.79, 29.86, 23.35; HRMS (ES) calcd [M + H]+ for C26H26N2O4 431.1970, found 431.1923.

3-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) propyl (E)-3-(three, four, five-
phenyl 3 armour oxygen radicals) acrylate (7b) White solid, 0.41g(yield 49.2%), m.p. 102.6–
104.2 ◦C, 1H NMR (400 MHz, CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.73
(d, J = 5.2 Hz, 1H), 7.58 (d, J= 16.0 Hz, 1H), 6.90 (s, 2H), 6.76 (s, 2H), 6.31 (d, J = 16.0 Hz, 1H),
4.64 (t, J = 7.4 Hz, 2H), 4.29 (t, J = 5.8 Hz, 2H), 3.92 (s, 9H), 3.90 (s, 3H), 3.05 (s, 3H), 2.28–2.22
(m, 2H); 13C NMR (100 MHz, CDCl3) δ: 166.75, 161.05, 153.56, 145.42, 143.12, 140.54, 140.44,
138.59, 135.28, 129.73, 122.54, 116.68, 115.41, 112.40, 108.90, 105.41, 93.48, 61.80, 61.08, 56.28,
55.77, 41.97, 31.82, 29.95, 29.36, 23.45; HRMS (ES) calcd [M + H]+ for C28H30N2O6 491.2182,
found 491.2131.

4-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) propyl (E)-3-(2-nitro phenyl)
acrylate (7c) Yellow solid, 0.38 g (yield 44.2%), m.p. 128.6–129.3 ◦C, 1H NMR (400 MHz,
CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 8.14 (d, J = 16.0 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.97 (d,
J = 9.2 Hz, 1H), 7.73–7.64 (m, 3H), 7.60–7.56 (m, 1H), 6.90–6.87 (m, 2H), 6.33 (d, J = 16.0 Hz,
1H), 4.67 (t, J = 7.4 Hz, 2H), 4.33–4.29 (m, 2H), 3.92 (s, 3H), 3.05 (s, 3H), 2.30–2.24 (m, 2H);
13C NMR (100 MHz, CDCl3) δ: 165.67, 160.75, 148.18, 142.94, 140.40, 139.88, 138.10, 135.16,
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130.41, 130.19, 129.26, 128.98, 124.79, 123.03, 122.25, 115.09, 112.14, 108.53, 93.31, 64.62, 55.60,
44.66, 28.47, 23.31; HRMS (ES) calcd [M + H]+ for C25H23N3O5 446.1716, found 446.1756.

4-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) butyl (E)-3-(4-methoxy phenyl)
acrylate(7d) White solid, 0.38g(yield 43.6%), m.p. 118.7–120.2 ◦C, 1H NMR (400 MHz,
CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 7.98 (d, J = 9.6 Hz, 1H), 7.74 (d, J = 5.2 Hz, 1H), 7.63 (d,
J = 16.0 Hz, 1H), 7.46 (d, J = 8.8 Hz, 2H), 6.91–6.88 (m, 4H), 6.29 (d, J = 16.0 Hz, 1H), 4.54
(t, J = 7.6 Hz, 2H), 4.25 (t, J = 6.4 Hz, 2H), 3.94 (s, 3H), 3.84 (s, 3H), 3.03(s, 3H), 2.01–1.94
(m, 2H), 1.867–1.80 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 167.21, 161.44, 160.88, 144.76,
142.95, 140.44, 138.38, 135.21, 129.75, 129.42, 126.95, 122.39, 115.23, 115.12, 114.30, 112.26,
108.66, 93.37, 63.47, 55.68, 55.67, 44.38, 27.18, 26.13, 23.41; HRMS (ES) calcd [M + H]+ for
C27H28N2O4 445.2127, found 445.1884.

7-methoxy-4- (1-methyl-9H-pyridine [3,4-b] indole-9-base) butyl (E)-3-(three, four, five,
three oxygen radicals phenyl) acrylate(7e) Yellow solid, 0.42g (yield 49.0%), m.p.
95.7–96.3 ◦C, 1H NMR (400 MHz, CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H),
7.75 (d, J = 5.2 Hz, 1H), 7.59 (d, J = 16.0 Hz, 1H), 6.91–6.89 (m, 2H), 6.74 (s, 2H), 6.31 (d,
J = 16.0 Hz, 1H), 4.55 (t, J= 7.8 Hz, 2H), 4.26 (t, J = 6.2 Hz, 2H), 3.94 (s, 3H), 3.89 (s, 9H), 3.03
(s, 3H), 2.02–1.95 (m, 2H), 1.87–1.80 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 166.83, 160.87,
153.40, 145.08, 142.95, 140.41, 140.19, 138.40, 135.21, 129.69, 129.44, 122.42, 116.87, 115.26,
112.28, 108.61, 105.23, 93.43, 63.67, 60.93, 56.13, 55.69, 44.37, 27.19, 26.12, 23.42; HRMS (ES)
calcd [M + H]+ for C29H32N2O6 505.2338, found 505.2361.

4-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) butyl (E)-3-(2-nitro phenyl) acry-
late(7f) White solid, 0.37g(yield 43.6%), m.p. 130.9–132.2 ◦C, 1H NMR (400 MHz, CDCl3) δ:
8.28 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 15.6 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 9.2 Hz,
1H), 7.73 (d, J = 5.2 Hz, 1H), 7.67–7.60 (m, 2H), 7.56 –7.52(m, 1H), 6.90–6.87 (m, 2H), 6.34
(d, J = 16.0 Hz, 1H), 4.54 (t, J =7.8 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 3.94 (s, 3H), 3.03 (s, 3H),
2.01–1.93 (m, 2H), 1.87–1.80 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 165.62, 160.88, 148.22,
142.94, 140.41, 140.38, 138.36, 135.17, 133.49, 130.40, 130.33, 129.43, 129.08, 124.88, 122.73,
122.37, 115.20, 112.24, 108.69, 93.34, 64.07, 55.67, 44.32, 27.16, 26.03, 23.38; HRMS (ES) calcd
[M + H]+ for C26H25N3O5 460.1872, found 460.1619.

7-methoxy-5-(1-methyl-9H-pyridine [3,4-b] indole-9-base) amyl (E)-3-(4-methoxy phenyl)
acrylate(7g) White solid, 0.40g(yield 46.2%), m.p. 91.1–92.3 ◦C, 1H NMR (400 MHz, DMSO-
d6) δ: 8.17 (d, J = 5.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 5.2 Hz, 1H), 7.66 (d,
J = 8.8 Hz, 2H), 7.57 (d, J = 16.0 Hz, 1H), 7.20 (s, 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.87 (d,
J = 8.6 Hz, 1H), 6.44 (d, J = 16.0 Hz, 1H), 4.57 (t, J = 7.6 Hz, 2H), 4.13 (t, J = 6.6 Hz, 2H),
3.91 (s, 3H), 3.81 (s, 3H), 2.96 (s, 3H), 1.82–1.74 (m, 2H), 1.72–1.69 (m, 2H); 1.51–1.43 (m,
2H); 13C NMR (100 MHz, CDCl3) δ: 167.22, 161.33, 160.84, 144.44, 143.00, 140.31, 138.03,
135.15, 129.66, 129.40, 126.99, 122.33, 115.31, 115.10, 114.24, 112.21, 108.64, 93.32, 63.79, 55.63,
55.30, 44.66, 30.23, 28.50, 23.38, 23.20; HRMS (ES) calcd [M + H]+ for C28H30N2O4 459.2283,
found 459.2315.

7-methoxy-5-(-methyl-9H-pyridine [3,4-b] indole-9-base) amyl (E)-3- (three, four, five, three
oxygen radicals phenyl) acrylate(7h) White solid, 0.40g(yield 48.9%), m.p. 103.7–104.7 ◦C,
1H NMR (300 MHz, DMSO-d6) δ: 8.16 (d, J = 5.1 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.87 (d,
J = 5.4 Hz, 1H), 7.57 (d, J = 15.9 Hz, 1H), 7.20 (s, 1H), 7.07 (s, 2H), 6.86 (d, J = 8.7 Hz, 1H),
6.64 (d, J = 15.9 Hz, 1H), 4.56 (t, J = 7.4 Hz, 2H), 4.14 (t, J = 6.5 Hz, 2H), 3.91 (s, 3H), 3.83
(s, 6H), 3.70 (s, 3H), 2.95 (s, 3H), 1.81–1.69 (m, 4H), 1.53–1.44 (m, 2H); 13C NMR (100 MHz,
DMSO-d6) δ: 166.88, 160.99, 153.55, 145.16, 143.21, 140.97, 139.93, 138.19, 135.02, 130.08,
128.90, 122.81, 117.76, 114.68, 112.67, 109.54, 106.40, 94.12, 64.19, 60.56, 56.50, 56.04, 44.41,
30.39, 28.47, 23.53, 23.20; HRMS (ES) calcd [M + H]+ for C30H34N2O6 519.2495, found
519.2474.
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7-methoxy-5-(1-methyl-9H-pyridine [3,4-b] indole-9-base) amyl (E)-3-(2-nitro phenyl) acry-
late(7i) Yellow solid, 0.38g (yield 44.2%), m.p. 127.4–130.0 ◦C, 1H NMR (400 MHz, CDCl3)
δ: 8.28 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 16.0 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 9.2 Hz,
1H), 7.73 (d, J = 5.6 Hz, 1H), 7.69–7.62 (m, 2H), 7.54–7.58 (m, 1H), 6.89–6.86 (m, 2H), 6.34 (d,
J = 16.0 Hz, 1H), 4.53–4.49 (m, 2H), 4.24 (t, J = 6.4 Hz, 2H), 3.95 (s, 3H), 3.03 (s, 3H), 1.95–1.87
(m, 2H), 1.82–1.75 (m, 2H), 1.59–1.50 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 165.82, 158.08,
148.23, 144.12, 140.01, 138.76, 136.94, 133.49, 130.58, 130.22, 129.14, 127.31, 124.87, 123.16,
118.24, 115.39, 113.62, 108.74, 104.15, 99.94, 64.73, 62.57, 59.60, 33.71, 32.46, 31.74, 24.40;
HRMS (ES) calcd [M + H]+ for C27H27N3O5 474.2056, found 474.2011.

6-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) hexyl (E) -3-(4-methoxy phenyl)
acrylate(7j) Yellow solid, 0.36g (yield 37.6%), m.p. 88.7–90.4 ◦C, 1H NMR (300 MHz, CDCl3)
δ: 8.29 (d, J = 5.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 5.1Hz, 1H), 7.63 (d, J = 16.2 Hz,
1H), 7.46 (d, J = 8.5 Hz, 2H), 6.84–6.90(m, 4H), 6.29 (d, J = 15.9 Hz, 1H), 4.45 (t, J = 7.8 Hz,
2H), 4.18 (t, J =6.7 Hz, 2H), 3.94 (s, 3H), 3.82 (s, 3H), 3.02 (s, 3H), 1.90–1.81 (m, 2H), 1.74–1.66
(m,2H), 1.50–1.45 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 167.25, 161.27, 160.76, 144.30,
142.95, 140.37, 138.08, 135.16, 129.60, 129.28, 127.00, 122.28, 115.42, 115.11, 114.21, 112.15,
108.51, 93.31, 64.03, 55.60, 55.26, 44.68, 30.47, 28.60, 26.52, 25.76, 23.30; HRMS (ES) calcd [M
+ H]+ for C29H32N2O4 473.2440, found 473.2393.

6-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base)hexyl (E)-3-(three, four, five, three
oxygen radicals phenyl) acrylate(7k) Yellow solid, 0.36g (yield 38.1%), m.p. 73.7–73.9 ◦C,
1H NMR (400 MHz, CDCl3) δ: 8.29 (d, J = 5.2 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.74 (d,
J = 5.2 Hz, 1H), 7.59 (d, J = 15.6 Hz, 1H), 6.91–6.86 (m, 2H), 6.75 (s, 2H), 6.33 (d, J = 16.0 Hz,
1H), 4.48 (t, J = 7.8 Hz, 2H), 4.20 (t, J = 6.6 Hz, 2H), 3.95 (s, 3H), 3.88 (s, 9H), 3.02 (s, 3H),
1.90–1.83 (m, 2H), 1.74–1.69 (m, 2H), 1.50–1.47 (m, 4H); 13C NMR (100 MHz, CDCl3) δ:
166.95, 160.86, 153.36, 144.70, 143.08, 140.30, 140.05, 137.94, 135.19, 129.81, 129.46, 122.40,
117.21, 115.15, 112.26, 108.57, 105.15, 93.44, 64.24, 60.91, 56.10, 55.68, 44.76, 30.50, 28.61,
26.55, 25.77, 23.19; HRMS (ES) calcd [M + H]+ for C31H36N2O6 533.2651, found 533.2551.

6-(7-methoxy-1-methyl-9H-pyridine [3,4-b] indole-9-base) hexyl (E)-3-(2-nitro phenyl) acry-
late(7l) White solid, 0.35g(yield 33.9%), m.p. 117.3–119.9 ◦C, 1H NMR (300 MHz, DMSO-d6)
δ: 8.16 (d, J = 5.1 Hz, 1H), 8.08 (d, J = 8.7 Hz, 2H), 7.95–7.90 (m, 2H), 7.87 (d, J = 5.1 Hz,
1H), 7.78 (t, J = 7.5 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.18 (s, 1H), 6.86 (d, J = 8.7 Hz, 1H),
6.62 (d, J = 15.9 Hz, 1H), 4.55 (t, J = 7.4 Hz, 2H), 4.16 (t, J = 6.5 Hz, 2H), 3.90 (s, 3H), 2.95 (s,
3H), 1.78–1.71 (m, 2H), 1.66–1.60 (m, 2H), 1.45–1.40 (m, 4H); 13C NMR (100 MHz, CDCl3) δ:
165.67, 160.75, 148.18, 142.94, 140.40, 139.88, 138.10, 135.16, 133.40, 130.41, 130.19, 129.26,
128.98, 124.79, 123.03, 122.25, 115.09, 112.14, 108.53, 93.31, 64.62, 55.60, 44.66, 30.48, 28.47,
26.51, 25.76, 23.31; HRMS (ES) calcd [M + H]+ for C28H29N3O5 488.2185, found 488.2201.

First, 1.8 mmol of the corresponding acid was weighed and dissolved in dry THF.
Then, 2.16 mmol of SOCl2 was dropped into the system, refluxed at 65 ◦C for 1h, and the
solvent was dried with a rotary evaporator set at a constant temperature to obtain acyl
chloride for future use. Next, 1.5 mmol of intermediate (10) was dissolved in 10 mL dry
tetrahydrofuran, and the acyl chloride obtained in the previous step was dissolved in 5 mL
dry tetrahydrofuran before being slowly dropped into the reaction system, The reaction
process is shown in Scheme 2. The reaction temperature was 25 ◦C, the reaction time was
5h, the solvent was evaporated by rotary evaporation, and saturated NaCl was washed
with water three times. After drying with anhydrous sodium sulfate, the target compound
was purified by chromatographic column (ethyl acetate: petroleum ether = 1:1).

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (2-chlorophenyl) ketone(11a)
White solid, 0.41g(yield 49.3%), m.p. 224–225 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS,
ppm): δ 11.02 (s, 1H, NH), 7.58 (dd, J = 7.6, 1.5 Hz, 1H, Ar-H), 7.53–7.46 (m, 2H, Ar-H), 7.45
(dd, J = 6.9, 1.5 Hz, 1H, Ar-H), 7.37 (d, J = 7.7 Hz, 1H, Ar-H), 7.33 (d, J = 8.0 Hz, 1H, Ar-H),
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7.10–7.04 (m, 1H, Ar-H), 6.97 (td, J = 7.5, 0.9 Hz, 1H, Ar-H), 5.71 (m, 1H, CH-N), 3.50–3.41
(m, 2H, CH2-N), 2.69–2.58 (m, 2H, CH2-CH2), 1.55 (d, J = 6.7 Hz, 3H, CH3). 13C NMR
(100 MHz, DMSO-d6, TMS, ppm): δ 166.50, 136.62, 136.53, 135.38, 131.10, 130.13, 129.92,
128.32, 128.06, 126.74, 121.56, 119.13, 118.29, 111.64, 106.56, 61.48, 45.55, 21.98, 19.18. HRMS
(ES) calcd [M + H]+ for C19H17N2O1Cl 325.1164, found 325.1112.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (4-chlorophenyl) ketone(11b)
Yellow solid, 0.55g (yield 69.9%), m.p. 213–214 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS,
ppm): δ 10.99 (s, 1H, NH), 7.55 (d, J = 8.1 Hz, 2H, Ar-H), 7.48 (d, J = 6.7 Hz, 2H, Ar-H),
7.40 (d, J = 7.6 Hz, 1H, Ar-H), 7.31 (t, J = 15.5 Hz, 1H, Ar-H), 7.06 (t, J = 6.7 Hz, 1H, Ar-H),
6.98 (t, J = 7.3 Hz, 1H, Ar-H), 5.71–5.50 (m, 1H, CH-N), 3.70 (m, CH2-N), 3.50–3.39 (m,
1H, CH2-N), 2.84–2.63 (m, 2H, CH2-CH2), 1.59–1.48 (d, J = 6.7 Hz, 3H, CH3).13C NMR
(100 MHz, DMSO-d6, TMS, ppm):δ 168.02, 136.51, 135.93, 135.68, 134.70, 134.70, 129.22,
126.81, 126.81, 121.61, 119.12, 118.34, 111.69, 111.54, 106.52, 55.99, 46.00, 22.17, 19.35. HRMS
(ES) calcd [M + H]+ for C19H17N2O1Cl 325.1164, found 325.1095.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (2-methoxyphenyl) ketone(11c)
White solid, 0.54g(yield 68.7%), m.p. 236–237 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS,
ppm): δ 10.87 (s, 1H, NH), 7.44–7.39 (m, 2H, Ar-H), 7.32 (d, J = 8.0 Hz, 1H, Ar-H), 7.19 (d,
J = 6.2 Hz, 1H, Ar-H), 7.11 (d, J = 8.3 Hz,1H, Ar-H), 7.08–7.02 (m, 2H, Ar-H), 6.96 (t, J = 7.3
Hz, 1H, Ar-H), 5.78–5.60 (m, 1H, CH-N), 3.79 (s, J = 22.0 Hz, 3H, OCH3), 3.42 (m, J = 20.4,
10.9 Hz, 2H, CH2-N), 2.76–2.54 (m, 2H, CH2-CH2), 1.52 (d, J = 6.7 Hz, 3H, CH3).13C NMR
(100 MHz, DMSO-d6, TMS, ppm):δ 167.53, 155.67, 136.55, 135.87, 135.81, 130.81, 128.26,
127.52, 126.80, 126.75, 121.45, 121.25, 119.05, 111.58, 106.77, 56.27, 55.78, 45.29, 22.29, 19.41.
HRMS (ES) calcd [M + H]+ for C20H20N2O2 321.1760, found 321.1606.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (3-methoxyphenyl) ketone(11d)
White solid, 0.55g(yield 68.7%), m.p. 150–151 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS,
ppm): δ 10.85 (s, 1H, NH), 7.42–7.36 (m, 2H, Ar-H), 7.30 (d, J = 7.4 Hz, 1H, Ar-H), 7.08–7.02
(m, 2H, Ar-H), 7.00–6.92 (m, 3H, Ar-H), 5.63 (m, 6.5 Hz, 1H, CH-N), 3.80 (s, 3H, OCH3),
3.34 (m, J = 12.6, 7.5 Hz, 2H, CH2-N), 2.83–2.62 (m, 2H, CH2-CH2), 1.53 (d, J = 6.6 Hz, 3H,
CH3). 13C NMR (100 MHz, DMSO-d6, TMS, ppm):δ 169.62, 159.77, 138.59, 136.49, 135.79,
130.35, 126.83, 121.51, 119.10, 118.90, 118.28, 115.75, 112.20, 111.59, 106.58, 55.79, 45.83, 41.87,
22.29, 19.38. HRMS (ES) calcd [M + H]+ for C20H20N2O2 321.1760, found 321.1605. ESI-MS:
found 321.1605 for C20H20N2O2 [M + H] +.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (4-methoxyphenyl) one (11e)
White solid, 0.55g(yield 70.8%), m.p. 232–233 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS,
ppm): δ 10.78 (s, 1H, NH), 7.39 (d, J = 8.6 Hz, 3H, Ar-H), 7.29 (d, J = 8.0 Hz, 1H, Ar-H),
7.08–6.94 (m, 4H, Ar-H), 5.57–5.30 (m, 1H, CH-N), 3.81 (s, 3H, OCH3), 3.42–3.21 (m, 2H,
CH2-N), 2.72 (m, 2H, CH2-CH2), 1.53 (d, J = 6.7 Hz, 3H, CH3).13C NMR (100 MHz, DMSO-
d6, TMS, ppm):δ 169.96, 160.68, 136.47, 135.96, 129.21, 129.00, 126.86, 126.86, 121.48, 119.08,
118.26, 114.32, 114.32, 111.58,106.70, 55.78, 42.05, 19.12. HRMS (ES) calcd [M + H]+ for
C20H20N2O2 321.1760, found 321.1610.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2 -) (2-nitrophenyl) ketone(11f) Yel-
low solid, 0.51g (yield 66.1%), m.p. 251–252 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS, ppm):
δ 11.03 (s, 1H, NH), 8.26 (d, J = 8.2 Hz, 1H, Ar-H), 7.89 (t, J = 7.3 Hz, 1H, Ar-H), 7.75 (t,
J = 7.4 Hz, 1H, Ar-H), 7.61 (d, J = 7.2 Hz, 1H, Ar-H), 7.37 (dd, J = 17.5, 7.8 Hz, 2H, Ar-H), 7.06
(dd, J = 16.6, 8.7 Hz, 1H, Ar-H), 6.98 (t, J = 7.3 Hz, 1H, Ar-H), 5.59 (m, 1H, CH-N), 3.58–3.39
(m, 2H, CH2-N), 2.82–2.61 (m, 2H, CH2-CH2), 1.58 (d, J = 6.6 Hz, 3H, CH3). 13C NMR
(100 MHz, DMSO-d6, TMS, ppm):δ 166.27, 145.69, 136.56, 135.37, 133.26, 130.85, 126.85,
126.77, 125.34, 121.56, 119.14, 118.39, 118.28, 111.65, 106.55, 50.86, 41.75, 21.84, 20.63. HRMS
(ES) calcd [M + H]+ for C19H17N3O3 336.1505, found 336.1354.
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(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (4-nitrophenyl) ketone(11g) Yel-
low solid, 0.48g (yield 59.7%), m.p. 268–269 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS, ppm):
δ 10.90 (s, 1H, NH), 8.31 (d, J = 8.7 Hz, 2H, Ar-H), 7.72 (d, J = 8.5 Hz, 2H, Ar-H), 7.40 (d,
J = 7.8 Hz, 2H, Ar-H), 7.06 (t, J = 7.1 Hz, 1H, Ar-H), 6.98 (td, J = 7.5, 1.0 Hz, 1H, Ar-H),
5.80–5.57 (m, 1H, CH-N), 3.67–3.39 (m, 2H, CH2-N), 2.85–2.61 (m, 2H, CH2-CH2), 1.56
(d, J = 5.8 Hz, 3H, CH3). 13C NMR (100 MHz, DMSO-d6, TMS, ppm):δ 168.10, 148.34,
143.33, 136.52, 135.42, 128.48, 126.77, 126.77, 124.45, 124.45, 121.57, 119.15, 118.28, 111.64,
106.47, 46.00, 41.95, 22.15, 19.39. HRMS (ES) calcd [M + H]+ for C19H17N3O3 336.1505,
found 336.1361.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridyl [3,4-b] indole-2-) (3,5-dinitrophenyl) ketone (11h)
Red solid, 0.47g (yield 54.3%), m.p. 249 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS, ppm):
δ 11.02 (s, 1H), 8.90 (s, 1H, NH), 8.69 (d, J = 1.6 Hz, 2H, Ar-H), 7.42 (d, J = 7.6 Hz, 1H,
Ar-H), 7.34 (d, J = 8.0 Hz, 1H, Ar-H), 7.07 (t, J = 7.4 Hz, 1H, Ar-H), 6.98 (t, J = 7.4 Hz,
1H, Ar-H), 5.67 (dd, J = 12.8, 6.6 Hz, 1H, CH-N), 3.72 (dd, J = 13.8, 4.4 Hz, 1H, CH2-N),
3.58–3.47 (m, 1H, CH2-N), 2.81 (dd, J = 19.0, 8.1 Hz, 1H, CH2-CH2), 2.66 (d, J = 12.7 Hz, 1H,
CH2-CH2), 1.60 (d, J = 6.6 Hz, 3H, CH3). 13C NMR (100 MHz, DMSO-d6, TMS, ppm):δ
165.79, 148.77,148.77, 139.80, 136.51, 135.34, 127.81, 126.76, 121.57, 119.69, 119.14, 118.32,
111.61, 106.49,100.00, 46.40, 42.19, 22.20, 19.36. HRMS (ES) calcd [M + H]+ for C19H16N4O5
381.1356, found 381.2984.

(1-methyl-1,3,4,9-tetrahydro-2H-pyridinetrium [3,4-b] indole-2-) (2-nitro-5-methylphenyl)
ketone (11i) Yellow solid, 0.45g (yield 53.8%), m.p. 258–260 ◦C, 1H NMR (400 MHz, DMSO-
d6, TMS, ppm): δ 10.91 (s, 1H, NH), 8.14 (d, J = 8.4 Hz, 1H, Ar-H), 7.55–7.50 (m, 1H, Ar-H),
7.38 (d, J = 6.2 Hz, 2H, Ar-H), 7.34 (d, J = 8.0 Hz, 1H, Ar-H), 7.10–7.02 (m, 1H, Ar-H),
7.00–6.94 (m, 1H, Ar-H), 5.64 (m, 1H, CH-N), 3.48 (dd, J = 14.9, 9.2 Hz, 2H, CH2-N),
2.84–2.59 (m, 2H, CH2-CH2), 2.47 (s, 3H, Ar-CH3), 1.58 (d, J = 6.7 Hz, 3H, CH3). 13C NMR
(100 MHz, DMSO-d6, TMS, ppm):δ 166.39, 147.05, 143.33, 136.55, 135.40, 133.41, 131.11,
126.86, 126.78, 125.31, 121.54, 119.12, 118.27, 111.64, 106.57, 65.55, 45.94, 21.42, 19.21, 18.30.
HRMS (ES) calcd [M + H]+ for C20H19N3O3 350.1661, found 350.1510.

First, 20 mg of the compound was added to 3 mL dichloromethane for ultrasonic
treatment until it was completely dissolved. Next, 1mL of dichloromethane and n-hexane
mixed buffer solution (1:1) was slowly added to the wall, and 9 mL n-hexane was added
to the upper layer of the buffer solution [16,17]. Through slow evaporation of the solvent,
crystals of compound 7l, 7h, 11b, 11f and 11g were obtained [18].

Colorless crystals with appropriate size were selected for X-ray diffraction analysis.
The temperature was maintained at 296K during data acquisition. Anisotropic thermal
parameters were used to refine all non-hydrogen atoms. The hydrogen atoms were placed
in the calculated positions. The crystal structure was analyzed by the direct solution method
of SHELX.97 and refined by SHELX.97 [19,20]. Data collection: Bruker SMART APEX II; cell
refinement: Bruker SMART; data reduction: Bruker SAINT; molecular graphics: SHELXTL.

4.5. Molecular Docking

According to the information registered in the DRUGBANK database, Harmine has
binding activity to Amine oxidase [flavin-containing] A protein. In this experiment, target
compounds 7l, 7h, 11b, 11f and 11g were selected to match and simulate molecular docking
with one target of Amine oxidase [flavin-containing] A protein, and the corresponding crystal
structure (PDBID:2Z5Y) of the protein was found from the RCSB PDB protein structure
database as Amine oxidase [flavin-containing] A. Target compound 7l, 7h, 11b, 11f and
11g actedas the ligand. The PyMOL and AutoDock Tools were used to process 2Z5Y
protein receptor and 7l, 7h, 11b, 11f and 11g ligand, and to find the active pocket position.
AutoDock Vina software was used to dock the ligand with the receptor to obtain the binding
energy.
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The X-ray crystallographic coordinates for the structures reported in this study have
been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition
numbers 2118489(7l), 2155794(7h), 2155796(11b), 2155798(11f) and 2155799(11g). The
data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via https://www.ccdc.cam.ac.uk/data_request/cifwww.ccdc.cam.ac.uk/data_request/
cif(accessed on 20 April 2022).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27092888/s1, Figures S1–S63: The 1H-NMR, 13C-NMR and ESI-MS spectrum of
compound 7a-l and 11a-i. Tables S1–S6: Crystal data of compound 7l; Tables S7–S12: Crystal data
of compound 7h; Tables S13–S18: Crystal data of compound 11b; Tables S19–S24: Crystal data of
compound 11f; Tables S25–S30: Crystal data of compound 11g.
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